■プロフィール

ぷろどおむ

Author:ぷろどおむ
元サッカー少年。今はしがない化学屋です。

■最近の記事
■最近のコメント
■最近のトラックバック
■月別アーカイブ
■カテゴリー
■FC2カウンター

■ブロとも申請フォーム
■ブログ内検索

■RSSフィード
■リンク
スポンサーサイト
上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。


スポンサー広告 | --:--:--
雑学:続々・メートルのお話
前回の続きです。

前回書いた通り,光速が「定義」として設定されたことにより,波長(=長さ)を求めるためには「光の周波数」を厳密に求めさえすれば良いことになりました。

しかし,光の周波数は数百THz(テラヘルツ=10^12ヘルツ)の領域であるため,現在ある測定器で直接測定するのは非常に困難です。マイクロ波領域の周波数をカウントすることは技術的に可能となっているのですが,せいぜい100GHz(ギガヘルツ=10^9ヘルツ)までですので,両者の間には数千倍の開きがあります。そのため,これまで国家標準として使われてきた「よう素安定化 He-Ne レーザー」の周波数を求める際にも,「周波数チェイン」と呼ばれる技術を用い,測定したい「よう素安定化 He-Ne レーザー」の波長から,セシウム133原子の基準周波数である9193MHz(メガヘルツ=10^6ヘルツ)までの間に,「よう素安定化 He-Ne レーザー」よりも周波数の低い様々な波長のレーザーやマイクロ波を挟み込み,それぞれを比較しながら値をつけていくというある意味アナログ的なやり方で測定が行われたりしました。

そのため,理論上は時間測定の精度と同等のものが得られるはずの長さ測定の精度は,実際の測定により発生する不確かさに足を引っ張られてしまっていた(現在,時間は15桁の精度で測定可能)のも事実だったりします。

しかし,このような技術的な問題を見事に解決する非常に画期的な新しい技術が開発されました。それが

光周波数コム

と呼ばれる技術です。

レーザーに関する応用技術として,パルスレーザーと呼ばれるものがあります。パルスレーザーには,大まかに分けてモード同期型のパルスレーザーと,Qスイッチ型のパルスレーザーがあります。この技術は,光の持つエネルギーが非常に短い時間に濃縮されるために非常に高いエネルギーを簡単に得られるようになるため,化学の世界では通常では起きにくいような反応を引き起こすために用いられたりします。また,非常に短い時間だけ光が照射されますので,極短時間に起きている化学反応の様子を観察するのに使われたりします。

今回注目するのは,前者の「モード同期型パルスレーザー」です。

波には「うなり」と呼ばれる現象があります。これは,微妙に周波数の異なる波が混ざり合うことによりそれぞれの波が干渉し合い,結果的にある一定の周期で振幅が増減するという現象です。微妙に音程の違う音を同時に鳴らすと,音の強弱が変化しているように聞こえます。この現象がうまくいくと,結構いい感じの音に聞こえたりするため,音楽業界などではフランジャーと呼ばれる装置を使って,意図的にこのような現象を起こしたりします。

そして,光も音と同じく「波」としての性質を持っていますので,同じような現象が起きます。つまり,微妙に周波数を変えた光を同じタイミングで混ぜてあげると,時間的に光が強められたり弱められたりします。

さらに面白いことに,混ぜる光の種類を増やせば増やしていくほど,強められる時間がどんどん短くなり,極めて瞬間的な時間に非常に高い強度の光が発生するようになります。これがモード同期型パルスレーザーと呼ばれる技術です。

この時発生するパルスは,その間隔が非常に精度良く等間隔なのが特徴です。しかも,このパルスの間隔は混ぜ合わせる光の種類が多くなればなるほど短く,しかも前述した通りパルス光そのものが発生している時間も短くなります。この時発生するパルス光の様子が,まるで櫛(comb)のようであることから,このような現象を「光周波数コム」と呼ぶようになりました。

そして,この光周波数コムを「ものさしの目盛り」として利用することで,光周波数の絶対測定が非常に高精度で行えることがわかりました。

測定したい光(測定光)をこの光周波数コムと混ぜ合わせます。すると,当然ですがこの測定光と,この測定光に最も近い周波数成分の光との間にうなりが発生します。

ある種の光学結晶はその中を通過した光の波長を正確に半分にすることが知られています。つまり,先ほどの測定光の一部をこの光学結晶に通してから光周波数コムの光と同期させてあげると,半分の波長=2倍の周波数に相当するうなりが検出されることになります。

この時,元々の測定光の周波数(A)と光学結晶を通過した光の周波数(B)の差(つまり,元々測定したかった光の周波数)は,それぞれの光に関連したうなりの周波数と(AとBの間に存在する光周波数コムの数 x 光周波数コム目盛りの幅)の和で表現できます。

この場合に発生するうなりの周波数や,光周波数コムの目盛り幅はせいぜい1GHz程度ですので,従来のマイクロ波用の技術を使うことが出来ます。また,AとBの間に発生している光周波数コム目盛りの数は,普通の波長計などで簡単に測定することが出来ます。

さらに,この光周波数コムの周波数と,仮想的にそのまま等間隔で低周波数側にシフトした時,最もゼロに一番近い周波数(オフセット周波数)を時間の基準である「協定世界時」に同期させると,測定光の絶対周波数を厳密に求めることが出来るようになります。

これにより,従来は非常に大がかりな装置(部屋一個分くらいの設備が必要,しかも測定対象によりまったく異なる装置が必要)が必要だった光周波数の絶対測定が,非常に簡便かつ小型の装置で実現できるようになりました。

そして,ちょうど一ヶ月ほど前にこれらの装置が国家標準として認定され,運用が開始されています。この装置によって得られる精度はなんと13桁。これまでよりも300倍も高い精度で測定できるようになったのです。

もちろん実際にこの装置を使って校正できるのは,長さ測定用に使われているレーザー,具体的には,633 nm(よう素分子吸収線波長安定化ヘリウムネオンレーザ-),532 nm(よう素分子吸収線波長安定化レーザ-),1.5 μm帯(Cバンド)(アセチレン分子吸収線波長安定化レーザー),1.5 μm帯(Cバンド)(シアン化水素分子吸収線波長安定化レーザ-)の4種類のレーザー波長です。光波長コム装置によって校正されたこれらの波長安定化レーザーは特定二次標準器と呼ばれ,これを使って次のレベルの標準器(普通のヘリウムネオンレーザーや,Nd:YAGレーザーなど)が校正されます。そしてその次はその標準器により,ブロックゲージや他の様々な測定器具が順々に校正され,光周波数コムにより求められた正しい長さの値が,我々の使っているメジャーや定規の目盛りに繋がっていくことになります。

このような標準器から連なる測定の比較による一連の流れを「計量トレーサビリティ」と呼びます。

計量トレーサビリティは,長さだけではなく,SI(国際単位系)に属する7つの基本単位すべてにおいて構築され,すべての計量がSIへと繋がる道筋が,世界各国の国家計量機関により整備されています。日本では,産業技術総合研究所の計量標準総合センター(略称NMIJ)がその国家計量機関にあたり,計量に関する様々な活動を行っています。

というわけで,いきなり三回連続というすごい長さになってしまいました(^^; 最後まで読んでいただけた方には大感謝です。

それにしても,難しかった(X_X) 私も今回の一連のエントリ書くので勉強し直したんですが,光速が定義値になった辺りの一連の流れの辺りで混乱してしまい,思わず無かったことにしようかと思ってしまいました。

こんなありさまですので,わかりにくいところはもちろん,いろいろ嘘が混じっている可能性は非常に大きいです。いつものように,ご指摘・ご質問大歓迎ですので,どうかよろしくお願いいたします。

ちなみに,この光周波数コムの関連技術を開発したテオドール W.ヘンシュ博士(ドイツ)とジョン L.ホール博士(アメリカ)は,2005年にノーベル物理学賞を受賞しています。これもちょっとした雑学というか豆知識として覚えていても面白いかもしれません。

正直,がちがちの物理なんて言う専門外の領域に手を出してしまったことを猛烈に後悔している今日この頃なのですが,出来る範囲で続けていきたいと思います。

次回は,今回のキーポイントでもあった「時間」について書いてみようかと思います。
スポンサーサイト


テーマ:科学・医療・心理 - ジャンル:学問・文化・芸術

雑学 | 22:04:19 | Trackback(1) | Comments(0)
コメントの投稿

管理者にだけ表示を許可する

エコナの続き
ほとんど旬をはずしている話題ですが、乗りかけた船ということでもう少しだけ。 BMDL10から10000倍の暴露マージンを取れば健康上の危惧が心配されない、これについてわかりやすく書かれているサイト 農林水産省・食品中のアクリルアミドに関する情報・用語解説 MoE... 2009-10-30 Fri 20:20:06 | 松山でアウトドアと研究

FC2Ad

上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。